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Are superconductors really superconducting? 
David A. Huse, Matthew P. A. Fisher & Daniel S. Fisher 

The most striking difference between the behaviour of the copper oxide high-temperature superconduc­
tors and previous low-temperature type II superconductors is the much more gradual decrease in 
electrical resistance with temperature in the latter, in the presence of a magnetic field. This raises 
the question of whether a type II superconductor has strictly zero resistivity, when cooled in a 
magnetic field. Theoretical and experimental evidence now suggests that as the temperature is 
lowered, there is a sharp phase transition to a truly superconducting, impurity-dominated phase 
containing a disordered, frozen arrangement of magnetic flux vortices. 

IN 1911, Kammerlingh-Onnes found that the electrical resistivity 
of mercury abruptly vanished below a temperature of 4.2 K. 
This historic observation of superconductivity led to the dis­
covery of a host of related phenomena, including the expulsion 
of magnetic fields (the Meissner effect) and magnetic flux quan­
tization. Attempts to understand these phenomena culminated 
in the phenomenological theory of Ginzburg and Landau. The 
microscopic theory of Bardeen, Cooper and Schreiffer (BCS) 
provided a justification of Ginzburg-Landau theory and 
explained many other properties of superconductors'. Although 
most of the macroscopic properties of superconductors were 
understood' by 1970, there remained theoretical problems with 
understanding the apparent vanishing of the resistivity in a wide 
class of superconductors: the 'type II' materials. Ironically, the 
original and defining property of superconductors, zero resis­
tivity, was in some ways the least well understood. 

The discovery of the high-temperature (high- Te) copper oxide 
superconductors in 1986 led to a resurgence of interest in super­
conductivity and to the development of a new class of type II 
materials in which the superconductivity resides on layers of 
CU02' Although interest has focused on the microscopic 
'mechanism' of superconductivity in these materials and their 
peculiar normal-state properties, many of their macroscopic 
properties are far more strikingly different from previous super­
conductors. In Fig. 1, the resistivity of Bi2Sr2CaCu208+S (known 
as BSCCO) is shown on a logarithmic scale for various magnetic 
fields as a function of temperature. In zero magnetic field, the 
resistivity seems to vanish abruptly at a transition temperature 
of Te"'" 90 K, but in moderate magnetic fields of a few tesla, the 
resistivity is measurable down to temperatures below 20 K in 
spite of the expectation that it 'should' have vanished abruptly 
at a temperature Te2(H) near 80 K. Indeed, in fields greater than 
5 T, BSCCO does not become a better conductor than good 
copper until below 30 K. These data raise fundamental ques­
tions. Is BSCCO really superconducting (with truly zero resis­
tivity) at low temperatures in a magnetic field? More generally, 
do type II superconductors undergo a true phase transition to 
a state with strictly zero resistivity when cooled in a magnetic 
field, or does the resistivity just become too small to measure? 
Here we review recent attempts to answer these and related 
questions. Although these issues can be addressed entirely within 
the context of conventional Ginzburg-Landau theory, albeit 
with unconventional values of parameters, the answers require 
an understanding of the interplay between strong thermal fluctu­
ations, randomly placed impurities and other crystal imperfec­
tions, and transport in disordered media. Each of these areas 
has seen extensive development of theory and experiment in 
other contexts during the past two decades. Our current under­
standing-at least of the right questions if not all the answers 
about superconductivity-would not have been possible without 
the advances in these apparently unrelated fields during the 
period (roughly 1970-85) when research on superconductivity 
was relatively dormant. 
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Flux lines and vortices 

When a superconductor is cooled below its transition tem­
perature, the electrons pair together to form 'Cooper pairs'. 
Although the BCS microscopic theory explains why this pairing 
occurs, the older, simpler and more phenomenological Gin­
zburg-Landau theory is adequate and indeed necessary to 
understand many of the most striking features of the supercon­
ducting phase'. It focuses exclusively on the coherent quantum­
mechanical wavefunction, 1/1, of the Cooper pairs, its variations 
in space and time, and its interactions with electric and magnetic 
fields. This wavefunction is a complex scalar and can thus be 
characterized by its amplitude and phase: 1/1 = 11/11 e i

"'. 

In general both the amplitude and the phase of the wave 
function will vary in space and time, but it is primarily the 
spatial correlations in the phase, </J, that underlie the striking 
features of superconductivity. In the absence of a magnetic field, 
as a material is cooled into the superconducting state, the phase 
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FIG. 1 The temperature (T) dependence of the linear response resistivity. 
P, == IimJ _ O {EIJ}. where E is the electric field and J is the current density 
in the material. The solid curves are for Bi2Sr2 CaCuSOS +8 (BSCCO) and. for 
comparison. the dotted curves are for high-conductivity copper. Each curve 
is for a different magnetic field. indicated in tesla. Data are from refs 33-35. 
For low-temperature superconductors the drop in the resistivity remains 
fairly abrupt even in a magnetic field (as it is for BSCCO in zero field only). 
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of the wavefunction becomes macroscopically correlated, taking 
on the same time-averaged value at every point in the material. 
Such macroscopic correlations are referred to as 'long-range 
order', a concept which plays a central role in modern con­
densed-matter physics. 

Another classic example of long-range order occurs in mag­
netic materials. These come in a myriad of varieties, ranging 
from ferro magnets and antiferromagnets to the exotic frustrated 
materials called spin glasses2

• There are fruitful analogies 
between the types of magnetic order and the ordered states of 
a superconductor when it is placed in a magnetic field, as 
indicated in Fig. 2. The spins of the electrons in a solid can be 
visualized as tiny microscopic magnets. In a ferromagnet, 
the interactions between spins cause them to align in the 
same direction throughout the material. This cooperative 
phenomenon produces a permanent magnet, with each spin on 
average pointing towards, say, the north pole of the magnet. 
Such magnetic long-range order is closely analogous to the 
long-range order in a superconductor, with the direction of t/I 
in the complex plane (the phase cP) playing the role of the spin's 
orientation. 

One of the classic signatures of a superconductor, and one 
that is often used in testing new materials for possible supercon­
ductivity, is the expulsion of a small external magnetic field-the 
Meissner effect (Fig. 2). Although superconductors expel small 
magnetic fields, a sufficiently intense field will penetrate the 
material, but not without unusual consequences. In type I super­
conductors, the magnetic field can only penetrate at the cost of 
destroying the superconductivity. In type II superconductors, 
there is a compromise: small fields are expelled, but a magnetic 
field in excess of the lower critical field, Hel , penetrates nonuni­
formly, forming the 'mixed state'. The magnetic field forms flux 
lines, each line carrying precisely one unit of magnetic flux, the 
flux quantum cPo == he/2e which is set by the total charge 2e of 
the Cooper pairs. The diameter of each flux line is set by a 
characteristic length, called the magnetic penetration length, 
and denoted A. More generally, A is the length scale over which 
a magnetic field can vary in a superconductor. Near the middle 
of each flux line the amplitude, 1 t/l1, of the Cooper-pair wavefunc­
tion is suppressed to zero. The region where the amplitude is 
strongly suppressed is called the vortex core and has a radius 
of size the coherence length g, the second fundamental length 
characterizing a superconductor. In the high- Te copper oxides, 
g, which is in the range 10-20 A at low temperatures, is much 
smaller than the penetration length, A, which exceeds 1,000 A 
(ref. 3). In low- Te type II superconductors, g is usually much 
larger. The ratio K == A/ g is an important dimensionless para­
meter. In Ginzburg-Landau theory, the value K = 1/)2 marks 
the boundary between type I and type II materials. The high- Te 
cuprates, with very large K, are extreme type II superconductors. 
Here we focus only on type II superconductors, which enter 
the mixed state when a magnetic field penetrates the material. 

On fully encircling a vortex outside its core, the phase cP of 
the wavefunction changes (winds) by 27T. This phase change 
reflects electric currents (supercurrents) that flow around the 
vortex, screening the magnetic field and confining it to within 
a distance A of the vortex core. In contrast to vortices in classical 
fluids, the vorticity in a superconducting vortex is quantized; 
the phase change around a vortex must be an integer mUltiple 
of 27T because the wavefunction t/I is single-valued. Because of 
this quantization, a superconducting vortex is topologicaiiy 
stable, and a vortex line cannot terminate in the interior of a 
superconductor. 

Abrikosov4 elucidated the nature of the vortex or flux lines 
and predicted that when a type II superconductor is placed in 
a magnetic field in excess of H el , the vortices that penetrate the 
material should form a regular lattice. This prediction was 
confirmed a decade later5 in magnetic decoration experiments 
that showed a triangular array of flux lines, an Abrikosov vortex 
lattice (Fig. 2). If one neglects thermal fluctuations6

, the 

554 

Abrikosov vortex lattice shows two kinds of long-range order, 
although as we shall see, neither is robust enough to survive the 
ever-present imperfections and fluctuations in real materials. 
The most apparent are the long-range translational (and orienta­
tional) correlations present in the vortex array itself, directly 
analogous to crystalline correlations in a solid. A more subtle 
long-range order is also present: the phase, cP, of the wavefunc­
tion is ordered in a nontrivial spatial pattern, reflecting the 
underlying vortex lattice. This long-range phase coherence is 
analogous to antiferromagnetic order in magnetic materials, in 
which the electron spins show order with a periodic spatial 
structure (see Fig. 2). 

If the magnetic field in the vortex lattice is increased, the 
vortices become more closely spaced and their cores start to 
overlap. At the upper critical field the vortex lattice and the 
pairing of electrons disappear, and the material becomes 'nor­
mal'. Neglecting thermal fluctuations, the upper critical field is 
He2 = cPo/(27Te), so small coherence lengths give rise to large 
upper critical fields, For the high- Tc cuprate superconductors 
at low temperatures, the small coherence lengths should yield 
upper critical fields exceeding 100 T, greater than the fields 
available in today's magnets. A full phase diagram of a clean 
type II superconductor, obtained from a 'mean-field' treatment 
of Ginzburg-Landau theory, is shown in Fig. 3a for a particular 
value of K. Similar phase diagrams are quantitatively good for 
most clean low- Tc type II superconductors. But thermal fluctu­
ations and sample imperfections, which were omitted in deriving 
Fig. 3a, can greatly change this phase diagram? 

Thermal fluctuations 
In low- Tc superconductors, thermal fluctuations generally have 
a minor role, but thermal fluctuations are much more important 
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FIG. 2 Patterns of spin order in magnetically ordered systems (left, where 
arrows indicate the orientation of the local spins) and the analogous ordered 
phases of a superconductor (right). In the Meissner phase of the supercon­
ductor (top) the magnetic field and the vortices are expelled from the 
material, as indicated by the magnetic field lines around an ideal spherical 
superconducting ball. For the vortex lattice and glass, the positions of the 
vortex cores are indicated by dots and the circulating currents by arrows 
in the schematic drawings; on the right are images of vortex patterns on 
BSCCO crystals obtained by decorating the surface with fine magnetic 
particles that preferentially stick near the magnetic flux lines on each vortex. 
The decoration images are from the work reported in ref. 36. 
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in the high- Te copper oxide superconductors. This is because 
the temperatures are higher and the energies to create and move 
vortices are lower. The relevant energy scale is that required to 
create a piece of vortex line whose length is one coherence 
length 7 • This energy scale varies as g / A 2 , so it is much lower in 
the high- Te materials with their small coherence lengths and 
large penetration lengths. The coherence length, g, is roughly 
the size of the bound Cooper pairs of electrons, which are much 
smaller in the high- Te materials, and the large penetration 
lengths reflect weak supercurrents because of the relatively low 
density of mobile electron pairs. 

The most striking effects of enhanced thermal fluctuations in 
the high- Te superconductors are found in an applied magnetic 
field. The phase diagram for a type II superconductor with 
strong thermal fluctuations is shown in Fig. 3b. Notice the 
vortex-fluid regime between the mean-field upper critical field, 
He2 ( T), and the vortex-glass phase. On cooling in a field, the 
electrons start to pair and vortices form in the pair wavefunction 
near He2 , but the vortices do not freeze until substantially lower 
temperatures. The existence of a substantial vortex-fluid regime 
had been noted for thin superconducting films8

•
9

, but it was not 
observed in bulk superconductors until the copper oxide super­
conductors had been studied lo

•
ll

. In the vortex fluid, vortices 
are mobile and have only short-range correlations in their posi­
tions, much like atoms in a conventional fluid. The vortex-fluid 
regime extends to particularly low temperatures in extremely 
anisotropic layered materials (like BSCCO) when the magnetic 
field is directed perpendicular to the layers 12.13. In this case, the 
vortex lines actually consist of strings of point or 'pancake' 
vortices in each superconducting layer, with only rather weak 
correlations between vortices in different layers. The presence 
of a large vortex-fluid regime explains quite naturally the resis­
tivity data for BSCCO shown in Fig. l. 

The vortex fluid is the natural analogue of the disordered, 
paramagnetic phase that occurs in magnetic materials heated 
above the Curie (or Nee!) temperature. As in a paramagnet, the 
vortex fluid does not have any long-range order: vortex motion 
'scrambles' the phase 4> of the pair wavefunction, disrupting 
any possible long-range phase coherence and destroying super­
conductivity. It should be emphasized that the vortex fluid is 
not really a distinct phase: its properties evolve smoothly and 
continuously as the field or temperature is increased through 
He2 to the normal state. 

Resistivity 
Which of the phases in the phase diagrams (Fig. 3) are actually 
superconducting, with zero resistance? Although zero resistance 
is in many ways the defining characteristic of a superconductor, 
it is in some sense the hardest to explain. A crucial part is played 
by the motion of vortex lines, which causes dissipation and thus 
resistivity. In a superconductor the local electrical current flows 
in the direction in which the phase 4> increases and the current 
density J is proportional to the rate of increase of 4> along that 
direction: J ex:: V 4>. This current exerts a Magnus force on a vortex 
line, pushing it across the current (a closely related effect gives 
an aerofoil upward lift when a wind blows across it). The total 
change of phase 4> on passing through a superconducting 
material on one side of a vortex line differs by 27T from that 
found on passing on the other side. When vortex lines move 
across the material in response to the Magnus force they move 
in the direction that reduces the total change of phase and thus 
reduces (dissipates) the current. To maintain a steady current, 
a voltage difference (and thus an electric field E) must be 
maintained across the material. The voltage difference acts to 
increase the phase difference across the material, balancing the 
decrease due to the motion of the vortex lines, and thus maintain­
ing a steady current. In the Meissner phase (H < Hel ) the 
magnetic field is expelled from the material and there are no 
free vortex lines present to move and cause resistivity. Thus the 
Meissner phase is indeed superconducting with zero linear resis-
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tivity PI "" limJ~o {E / J} = O. Note that PI is the ohmic resistivity 
which measures the linear response to an applied current or 
field. As we shall see later, even in the Meissner phase there is 
some nonlinear resistivity: a nonzero electric field is needed to 
maintain any nonzero current density in the interior of the 
material, so the nonlinear resistivity P"" E / J only vanishes in 
the limit of zero current density. 

In a superconductor in the mixed state (H> Hel ), there are 
vortex lines present, induced by the penetrating magnetic field. 
Motion of these lines leads to resistivity. In the vortex-fluid 
regime the vortex lines are mobile because of thermal fluctu­
ations even without a current, and can thus move in response 
to a current, leading to a nonzero resistivity. But what about in 
the Abrikosov vortex-lattice phase? Perhaps surprisingly, in a 
perfectly clean and ideal material the entire vortex lattice would 
be free to move in response to a current, and again cause nonzero 
resistivity. In an ideal superconductor, therefore, the Abrikosov 
vortex-lattice phase is not really superconducting. Nevertheless, 
real materials always have chemical and structural imperfections 
('dirt') and these can impede the motion of the vortex-lattice I4

. 

In the presence of a penetrating magnetic field, if we wish to 
answer the question posed in our title, we must consider the 
role played by dirt. 

Dirt and the vortex-glass phase 
More than 20 years ago, Larkinl5 argued that material imperfec­
tions destroy the crystalline long-range order of the Abrikosov 
vortex lattice. There are two competing effects: the interactions 
between the vortex lines favour a lattice structure, but the 
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FIG. 3 a. Phase diagram of a type II superconductor, ignoring effects of 
thermal fluctuations and material imperfections, as a function of tem­
perature, T. and applied magnetic field, H. This phase diagram is qualitatively 
correct for most low- Tc type II superconductors. b, Schematic phase diagram 
for a type II superconductor with strong thermal fluctuations, such as the 
high- Tc cuprates. In the absence of material imperfections the low­
temperature ordered phase in a magnetic field above He1 would have been 
a vortex lattice but the ever -present imperfections destabilize the vortex 
lattice, replacing it with the vortex glass phase, as shown. The transition at 
Hc2 in a has here been broadened by fluctuations and has become only a 
gradual crossover from a normal metal to a vortex fluid, indicated by the 
shaded region. 
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randomly located material defects tend to pin the lines at random 
positions, disrupting the lattice structure. Larkin argued that 
beyond a characteristic length scale, fL , the random vortex 
pinning dominates and destroys the vortex-lattice phase. 
Although the size, fL , of the microcrystalline regions can be 
very long for weak pinning, the long-range lattice (positional) 
correlations are destroyed for distances in excess of fL' 

The conventional theory of vortex motion, based on ideas 
originated in the early 1960s by Anderson and Kim 14,16,17, main­
tains that finite 'bundles' of vortex line segments of length and 
diameter of order fL can move by thermal activation across the 
'landscape' of free energy barriers caused by the pinning. In 
this approach the interactions between the vortex bundles are 
ignored. Because the bundles are finite, the barriers have a finite 
maximum height, U. The independent motion of vortex bundles 
forced by an applied current would destroy the phase coherence 
of the pair wavefunction and lead to a finite resistivity with a 
thermally activated (Arrhenius) form: PI ~ exp (- U I kB T). Thus 
the macroscopic behaviour of vortices in the mixed state was 
predicted to be that of a very sluggish vortex fluid (like cold 
molasses flowing through a sponge). According to this theory, 
superconductors in a magnetic field are not really superconduct­
ing, except at zero temperature. For practical purposes, however, 
this conclusion is almost irrelevant for conventional supercon­
ductors: U I kB T is so large that PI is immeasurably small except 
extremely close to the Hc2 line. 

For the high- Tc copper oxide superconductors, on the other 
hand, U I kB T is not large and one must reconsider the issue, 
particularly in light of the new experimental measurements (for 
example those in Fig. O. We have recently explored a different 
scenari07,18 from that envisaged by Anderson and Kim. We 
argue that on cooling, the fluid of vortex lines interacting with 
the random pinning sites undergoes a sharp thermodynamic 
phase transition into a truly superconducting phase with no 
mobile vortices and thus strictly zero resistivity. In this supercon­
ducting phase the vortices are frozen into a sample-specific 
compromise configuration, determined in detail by the competi­
tion between the interactions of the vortices with each other 
and with the microscopic impurities in the material. Because 
the vortices are immobile, the phase of the pair wavefunction 
has true long-range order, althout,fl in a seemingly random 
pattern which reflects in detail the specific positions of the frozen 
vortices. The order present in this superconducting phase is 
directly analogous to the magnetic order that occurs in some 
random magnetic alloys, called spin glasses (see Fig. 2). In spin 
glasses2, the spin axes of the electrons are frozen in time, but 
rather than being aligned as in a ferromagnet, or in a spatially 
periodic pattern as in an anti ferromagnet, they are oriented in 
a sample-specific arrangement, determined by the microscopic 
details of the material. Because of this analogy, the new super­
conducting phase has been named the 'vortex glass>l9. 

In contrast to the Meissner phase, the superconducting vortex­
glass phase can only exist in an impure material. Thus we argue 

FIG. 4 Scaling in the vortex-glass critical regime for a crystal of YBCO in a 
6-T magnetic field applied parallel to the material's c-axis (perpendicular 
to the Cu02 planes). Data are from ref. 21. The solid circles are the linear 
resistivity, P" divided by the resistivity in the normal state, Pn' plotted on 
logarithmic scales against the difference of the temperature, T, from that 
of the vortex-glass phase transition, Tvg = 74 K. The slope of the solid line 
through the solid circles yields the critical exponent s = p(z -1} "" 6.5. The 
open circles are the current density, )nl {in arbitrary units}, for the onset of 
nonlinearity in the resistivity. Here the slope yields 21' "" 4. 
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that superconductors in a penetrating magnetic field can be truly 
superconducting only when they are dirty. The random pinning 
which is present to some extent in any real material, no matter 
how carefully prepared, destabilizes the vortex-lattice phase 
(which was not truly superconducting) and converts it into the 
superconducting vortex-glass phase. 

In our view, the fundamental flaw in the theories of thermally 
activated vortex motion based on Anderson and Kim's 
work 14,16,17 is that they assume independent motion of finite 
bundles of vortex-line segments. But as mentioned above, a 
vortex line cannot end in a superconductor, so the vortex lines 
are constrained to remain connected as segments of them are 
moved. We argue that at low temperatures this constraint and 
the interactions between the vortex lines (which extend out to 
distances of the order of the penetration length, A) cannot be 
ignored, even on length scales well beyond the micro crystallite 
size fL' These interactions cause phase correlations which at 
sufficiently low temperature can propagate to arbitrarily long 
distances, producing the long-range order of the vortex-glass 
phase. 

We will now consider some of the key predictions of the 
theory of the vortex-glass phase and their experimental 
confirmation. The evidence for the vortex-glass phase comes 
from transport experiments on the copper oxide superconduc­
tors conducted over the past few years20-24. 

Vortex-glass phase transition 
A fruitful way to distinguish a truly superconducting phase, 
with strictly zero resistivity, from a vortex fluid with immeasur­
ably small but nonzero resistivity is to search for a phase transi­
tion as the temperature is lowered. If the superconducting vor­
tex-glass phase exists, there must be a sharp thermodynamic 
phase transition which separates it from the (nonsuperconduct­
ing) vortex fluid. This phase transition may be of first order, in 
which case the resistivity will jump discontinuously to zero and 
other properties will be discontinuous at the phase transition, 
or it may be continuous (second order). In the latter case, which 
seems to obtain for samples of YBa2Cu307 (YBCO) with strong 
enough random pinning, one expects universal critical scaling 
behaviour for temperatures near the vortex-glass phase transi­
tion temperature, Tvg. 

Critical scaling behaviour occurs in all continuous phase 
transitions25 and can be attributed to the existence of a charac­
teristic length which diverges at the transition. Above the vortex­
glass transition, the relevant length, gvg, is the length scale over 
which the phase of the pair wavefunction is correlated (albeit 
in a random pattern). As at most continuous phase transitions, 
one expects a power-law divergence of the correlation length 
as the transition temperature is approached: with gvg ~ 
IT - Tvgl- V

, characterized by a critical exponent P. Critical slow­
ing of the dynamics is also expected near a continuous phase 
transition, with the relaxation time, 'T, diverging as a power of 
gvg, 'T ~ g~g ~ IT - Tvgl- ZV

, where z is the dynamical critical 
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FIG_ 5 Current-voltage (1- V) curves at fixed temperatures for a OA-fJ-m-thick 
YBCO epitaxial film in a 4-T magnetic field applied parallel to the material's 
c-axis. Adjacent curves differ by temperature intervals of -0.3 K, with the 
highest and lowest temperatures as indicated. The curves are on logarithmic 
scales, and the current densities J and electric fields E are also indicated. 
The dashed line indicates the vortex-glass transition temperature at TVg = 
77K at which E_jlZ+1)/2 with z=4.8±0.2. For temperatures above Tvg 

at low current densities, E - J. indicating the ohmic behaviour characteristic 
of a normal metal or vortex fluid. Below Tvg , the slope of the curves becomes 
steeper and steeper at low voltages suggesting exponentially small dissipa­
tion as predicted for the vortex-glass phase. Data are from ref. 20. The 
curves were measured in separate sweeps up to E = 1 V m-1 and to 
E = 10 V m-1

. The breaks between the two sets of curves at E = 1 V m-1 

are due to resistive heating in the larger E sweeps. 

exponent This time is, roughly speaking, the time it takes a 
fluctuation of size qVg to relax_ The renormalization group theory 
of critical phenomena near continuous phase transitions25 pre­
dicts that the critical exponents are universal numbers which 
characterize the type of transition but are insensitive to micro­
scopic details, such as the material. In addition, one expects 
there to be universal scaling laws which can relate measurements 
at different temperatures near the transition, provided each 
physical quantity is scaled by the appropriate power of ( T - Tvg)­
In particular we will focus on the dissipation as a function of 
applied current: the current-voltage curves. The linear resistivity 
is predicted to vanish as PI - (T - Tvg)' as the transition is 
approached from above, with s = v(z -1), an example of a 
scaling law7. Such a power-law form with exponent s = 6.5 for 
the resistivity has been observed for a sample of YBCO over a 
temperature range where the resistivity drops by more than four 
orders of magnitude21 (Fig. 4). 

At temperatures just above Tvg , the vortex-fluid state has a 
very long correlation length qvg. But these correlations can be 
disrupted by the vortex-line motion caused by even a small 
applied current density 1, so the nonlinear resistivity P (1) "" E / 1 
is very sensitive to the magnitude of 1 at temperatures near Tvg. 
It is useful to define a characteristic current-density scale In, as 
that current at which the vortex-fluid state is significantly disrup­
ted. To be specific, for T> Tvg we choose lnl as the current at 
which the nonlinear resistivity doubles: p(Jnl) = 2PI_ We predict7 

that In, should vanish as the inverse square of the correlation 
length, In, - g-:;i - (T - Tvg)2V; the measurements of Gammel et 
af?' on YBCO yield 2v=4 (Fig. 4). This rapid drop of lnl as 
T approaches Tvg from above is the experimental result most 
strikingly inconsistent with the 'conventional' theories '4,'6,'7 of 
thermally activated vortex motion. These theories assume that 
the correlation length is roughly Larkin's crossover length fL' 
so they do not predict any strong temperature dependence of 
In, in this regime. The 'conventional' approach therefore fails 
at temperatures and current densities low enough that the corre-
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lation length, qvg, is greater than the size of the microcrystalline 
regions, fL' 

In addition to predicting these power-law behaviours, scaling 
theory predicts that the functional dependence of the electric 
field on the current density will be the same for any temperature 
near but above Tvg , provided that the dissipation is normalized 
by the linear resistivity and the current density is normalized 
by lnl 

(1) 

where [l/l+(j) is a universal scaling function with [l/l+(j -0, 0) = 1 
and, from the above definition of I n, , [l/l+( 1) = 2. As we decrease 
T to Tvg at fixed 1, both p(J)/ PI and 1/ In, diverge. For E and 
p(J) at Tvg to be well-behaved, the scaling function in equation 
(1) must behave as [l/l+(j) - /z-I)/2 for large j. Then at Tvg one 
finds p(J) - ]<z-I)/2 or E - ]<z+I)/2, a power-law relationship 
between voltage and current Current-voltage (I-V) curves 
measured by Koch et al.20 on YBCO show the general features 
of the continuous phase transition (Fig. 5). The power-law 
behaviour at Tvg is indicated by the dashed line. For T> Tvg 

and 1« I n, , ohmic behaviour with E = p,l is observed, whereas 
for larger currents the nonlinearity becomes appreciable. Both 
PI and In, decrease continuously as T approaches Tvg from 
above. The values of the critical exponents extracted from the 
two experiments20,21 described above are in good agreement, 
although the samples and current densities studied were 
different Moreover, recent computer simulations26,2? of a model 
superconductor reveal evidence for a vortex-glass phase transi­
tion with similar critical exponents. 

Non-ohmic resistance 
Just below the vortex-glass transition at Tvg there is a scaling 
behaviour? analogous to equation 0), with a characteristic cur­
rent scale l nt - But now the behaviour for 1« lnt is not ohmic; 
rather, as the current is decreased the voltage vanishes faster 
than any power of the current, as indicated by the curvature to 
very high slopes at the bottom right of Fig. 5. This dissipation 
regime is that due to vortex motion in the ordered vortex-glass 
phase. To understand this, let us first consider the analogous 
dissipation processes in the much simpler Meissner phase. 

In the Meissner phase (H < H e, ) there are no free vortices 
present, but at nonzero temperatures thermal fluctuations spon­
taneously occur, typically making local excitations with free 
energy of the order of the thermal energy, kB T. One type of 
excitation that occurs and can lead to dissipation of a current 

FIG. 6 The bold circles represent closed vortex loop excitations in the 
Meissner phase. The inward-pointing arrows denote the inward force on 
the loop due to the line tension of the vortex; this force is proportional 
to the curvature of the loop. In the presence of a current density passing 
through the loop (into the page) there is also an outward Magnus force on 
the loop due to its interaction with this current (the opposite current would 
produce an inward force). The loop on the left is smaller than the critical 
radius so the inward force is larger and the loop tends to contract. The 
loop on the right is larger than the critical radius so the outward force 
dominates, and it tends to grow still larger, contributing to the dissipation 
of the current. 
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is closed vortex loops of finite circumference28 (Fig. 6). The free 
energy, fv(R), of a circular vortex loop of radius R is roughly 
proportional to its circumference, fv(R) = 27TRE, where 10 is the 
free energy per unit length or, equivalently, the line tension of 
a vortex. The Boltzmann probability of this loop appearing as 
a spontaneous thermal fluctuation at temperature T is thus 
exp [-fv(R)/ kB T). This is the probability that random thermal 
fluctuations coincidentally produce outward forces on the loop 
of sufficient average strength and duration for it to grow to this 
size. In the absence of any applied current such a vortex loop 
will almost certainly rapidly shrink in response to the ever­
present inward force of 10/ R per unit length arising from its line 
tension and curvature. Let us assume, however, that there is a 
uniform current density 1 passing through the loop. The outward 
Magnus force from this current can counterbalance the inward 
force from the vortex line tension (Fig. 6) and cause loops of 
radius greater than a critical size Rc(1) = 10/ 1 to tend to grow 
indefinitely; the resulting vortex motion produces dissipation28

• 

(The process of nucleation of vortex loops bigger than the critical 
radius Rc(1), is analogous to bulk nucleation of droplets of 
liquid in a supersaturated vapour, the applied current playing 
the role of the degree of supersaturation and Rc the role of the 
critical droplet radius.) The dissipation rate in the Meissner 
phase is proportional to the probability of nucleating sufficiently 
large loops, exp [-fv(Rc(1»/2kB T], yielding, for small current 
density 1 

E/ 1 = p(1) = exp [-(1T/ l)Ji) (2) 

with J.L = 1 and IT = 10
2

/ kB T setting the current scale of this 
thermally activated dissipation. Thus there is always dissipation, 
even in the Meissner phase, but at small current densities it 
arises from rare large thermal fluctuations and vanishes 
exponentially for 1 ~ O. 
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/ 
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.,./ exp [-(Jrl J )~l 
...... '"' 
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" exp [-(Jrl J )~l 
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FIG. 7 Electric field E against current density) in a truly superconducting 
phase (a Meissner or vortex-glass phase). a, With weak thermal fluctuations, 
)r »)c and the electric field for ) <)c is small. The dashed line is the 
extrapolation of the activated behaviour for) <)c to ) > )c' Near )c' however, 
the activation barriers for vortex motion vanish and there is a rapid increase 
in the dissipation, leading to an apparently sharp critical current. This 
behaviour is found in low- Tc superconductors. b, With strong thermal fluctu­
ations,)c and)T are comparable and the onset of dissipation is more gradual. 
This behaviour is found in the high- Tc superconductors (except at tem­
peratures far below Tc where the behaviour is more like that in a). 
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How does this fit in with the conventional concept of a 'critical 
current' in superconductors? For small current densities, the 
free energy barrier that must be crossed to produce a vortex 
loop varies as l-Ji. But this barrier becomes of order kB T at the 
critical current lc and the thermally activated dissipation law 
of equation (2) thus only applies for 1 < lc; for l> lc vortices 
are readily produced, yielding strong dissipation. In low- Tc 
superconductors, lc« IT except very near To so the nucleation 
of loops is very rare for 1 < lc. Thus one finds a fairly abrupt 
increase in the dissipation at lc (Fig. 7a). Very near Tc in 
conventional superconductors, and over large portions of the 
phase diagram of the high- Tc copper oxides, on the other hand, 
lc and IT are comparable so the onset of dissipation is more 
gradual, with the critical current ill defined (Fig. 7 b). 

In the vortex-glass phase, in which many vortices penetrate 
the sample, qualitatively similar dissipative behaviour occurs, 
although the details are much more subtle and not yet fully 
understood. It is not clear what the precise character of the 
dominant vortex-line rearrangements leading to nonlinear dissi­
pation will be in the vortex-glass phase; several proposals have 
been analysed7

,29-31. In each of the proposed dissipative pro­
cesses, however, the free energy barriers that must be crossed 
to produce the vortex rearrangements grow as a power of the 
size of the rearranged region, just as in the Meissner phase. If 
a current is applied through the superconductor, it will induce 
the thermally activated production of such rearrangements larger 
than a critical size Rc(1). This will cause phase slip and hence 
dissipation as in the Meissner phase leading again to a low­
current resistance of the form E / 1 = exp [-(1T/ l)Ji), but now 
with an exponent 0 < J.L ,,; 1 determined by the nature of the 
dissipative processes. Such thermally activated vortex motion 
is often called vortex (or flux) creep. As in the Meissner phase, 
a sufficiently strong current can overcome the free energy barriers 
to vortex motion, causing vortex (or flux) flow and rapid dissipa­
tion: this will occur above the 'critical' current density lc. We 
thus conclude that both the Meissner and vortex-glass phases 
are linear superconductors with vanishing resistivity only in the 
linear-response limit of zero current density. For any nonzero 
current density, the resistivity is nonzero because of thermally 
activated vortex motion, although it vanishes as an exponential 
function of the current density, l, for 1 ~ O. 

Because of the very small voltages that occur in the activated 
regime, direct measurement of the behaviour in equation (2) 
and experimental determination of the exponent J.L is difficult. 
Recent measurements20

,23,24 in the vortex-glass phase, however, 
yield reasonable fits to equation (2) with values of J.L less than 
1/2. 

Another way to study nonlinear dissipation in the vortex-glass 
phase is through magnetization relaxation at low temperatures. 
In a typical experiment a sample is cooled into the vortex-glass 
phase in a magnetic field, and then the field strength is suddenly 
changed. This change induces a non-equilibrium screening cur­
rent, l(t), which decays to zero as vortex lines enter or leave 
the material and move to their new equilibrium configuration. 
The slow decay of this current, which can be measured through 
the associated magnetization, is given by dl (t) / d t ex: E (1), with 
E(1) the electric field needed to sustain the current 1 in steady 
state. In conventional superconductors (and copper oxide super­
conductors at very low temperatures) dl/ dt is so small for 1 < lc 
that the current density never drops much below lo even in a 
year. With the strong fluctuations in the copper oxide supercon­
ductors, by contrast, the current can decay much further; and 
the predicted form for E(1) in equation (2) yields a decay as 
Jet) = IT[ln (t/ to)]-I/Ji at very long times, with to a microscopic 
time of order 10-9 

- 10- 12 s. This technique gave Sandvold and 
Rossel23 a voltage sensitivity almost 10 orders of magnitude 
better than conventional transport measurements, correspond­
ing to electric fields down to about 10-14 V em -I. Their inferred 
E(1) is shown in Fig. 8. They find good fits to equation (2) in 
YBCO films with J.L = 1/3. This is consistent with the transport 
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measurements and, together, these experiments provide strong 
evidence that the resistance vanishes faster than any power of 
the current in the vortex-glass phase_ 

Conclusions 
We have seen that the combined effects of thermal fluctuations 
and impurities lead to phase diagrams and transport properties 
of the high- Tc copper oxide superconductors in a magnetic field 
that are radically different from those oflow- Tc type II supercon­
ductors_ If a conventional low- Tc type II superconductor is 
cooled in a magnetic field in excess of Hc1 , the resistivity 
abruptly becomes immeasurably small as the Hd T) line in Fig_ 
3 a is crossed_ In striking contrast, because of the strong thermal 
fluctuations in the copper oxide materials, there is no well 
defined Hc2 line but only a gradual pairing of the electrons into 
Cooper pairs leading to the formation of vortex lines (Fig_ 3b)_ 
In the resulting non-superconducting vortex-fluid regime, as the 
temperature is lowered the vortex motion is increasingly 
impeded by impurities so the resistivity decreases_ This continues 
until the vortex-glass phase transition, Tvg(H), where the linear 
ohmic resistivity finally vanishes_ Near Tvg scaling behaviour of 
current-voltage curves is found, providing the best evidence for 
a true phase transition. In the vortex-glass phase the dissipation 
of a small current is dominated by the thermal activation of 
large collective vortex rearrangements which cause a resistance 
that vanishes exponentially with current at small currents. At 
very low temperatures, this thermally activated dissipation is 
small, and current-voltage curves show a fairly abrupt onset of 
dissipation at the critical current, with resistance too small to 
be directly measured at lower currents; this regime is similar to 
low- Tc superconductors. 
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FIG. 8 Electric field E against current density, J on logarithmic scales, as 
measured for a 0.2-fJ-m-thick epitaxial film of YBCO grown on SrTi03 (100)23. 
The applied magnetic fields are 0.3 T (left) and 0.1 T (right) and the tem­
perature is 70 K, which is in the vortex-glass phase. The data are the thick 
curves; at high E the electric field was directly measured, whereas at very 
low E it was inferred from the slow decay with time of Circulating currents 
in the material. The fits to equation (2) with iJ- =0,34 are indicated by the 
fine lines. 

Although experiments are qualitatively, and in some respects 
quantitatively, in accord with the theoretical picture presented 
here, there remain many open questions and new regimes to be 
explored. These include the dependence of Tvg and the current 
scales JT and Jc on the material and its type and distribution 
of imperfections, one interesting limit being that of very few 
imperfections (the clean limit). In addition, the nonlinear dissi­
pation in the mixed state has not been carefully examined in 
either highly anisotropic, quasi-two-dimensional materials such 
as BSCCO or in isolated, truly two-dimensional superconduct­
ing thin films; the latter are expected to be truly superconducting 
only for zero magnetic field or zero temperature, with no vortex­
glass phase at nonzero temperature32

• Another interesting 
avenue is the study of artificially structured superconductors, 
as produced by microfabrication techniques such as molecular­
beam epitaxy, where the properties of the structure might be 
systematically and continuously varied, for example by 
introducing nonsuperconducting layers of different thicknesses. 

Finally, we should directly answer the question posed in our 
title. Thanks to experiments on the high- Tc copper oxide super­
conductors and to new theoretical ideas, the answer that was 
thought to be "no, superconductors in the mixed state are not 
really superconducting; their resistance is just extremely small" 
is in fact, "yes, they are really superconducting at temperatures 
below the phase transition into the vortex-glass phase". D 
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